Brill-Noether theory for stable vector bundles

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vector Bundles and Brill–Noether Theory

After a quick review of the Picard variety and Brill–Noether theory, we generalize them to holomorphic rank-two vector bundles of canonical determinant over a compact Riemann surface. We propose several problems of Brill–Noether type for such bundles and announce some of our results concerning the Brill–Noether loci and Fano threefolds. For example, the locus of rank-two bundles of canonical de...

متن کامل

1 Semipositive Bundles and Brill - Noether Theory

We prove a Lefschetz hyperplane theorem for the determinantal loci of a morphism between two holomorphic vector bundles E and F over a complex manifold under the condition that E∗ ⊗ F is Griffiths k-positive. We apply this result to find some homotopy groups of the Brill-Noether loci for a generic curve.

متن کامل

Brill–noether Loci of Stable Rank–two Vector Bundles on a General Curve

In this note we give an easy proof of the existence of generically smooth components of the expected dimension of certain Brill–Noether loci of stable rank 2 vector bundles on a curve with general moduli, with related applications to Hilbert scheme of scrolls.

متن کامل

Brill-noether Theory

Let us be more precise. Of course, it is tautological that any projective curve can be embedded into some projective space. However, once we begin making demands on the embedding, we start to get some interesting answers. For instance, can we make sure target projective space “small”? It is easy to show that not every curve can be embedded in P2. Conversely, every smooth projective curve can be...

متن کامل

Brill-noether Theory, Ii

This article follows the paper of Griffiths and Harris, "On the variety of special linear systems on a general algebraic curve." 1. WARMUP ON DEGENERATIONS The classic first problem in Schubert calculus is: how many lines intersect four general lines in P 3 ? First, what does this numerology come from? The space of lines in P 3 is G(1, 3) which has dimension 2 × 2 = 4. The locus of lines inters...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Duke Mathematical Journal

سال: 1991

ISSN: 0012-7094

DOI: 10.1215/s0012-7094-91-06215-0